Plus-strand RNA viruses hijack Musashi homolog 1 to shield viral RNA from cytoplasmic ribonuclease degradation
Date:2025-03-06 Page Views: 10

Defang Zhou, Menglu Xu, Qingjie Liu, Ruixue Xin, Gege Cui, Longying Ding, Xiaoyang Liu, Xinyue Zhang, Tianxing Yan, Jing Zhou, Shuhai He, Liangyu Yang, Bin Xiang, Ziqiang Cheng

ABSTRACT

A successful strategy employed by RNA viruses to achieve replication is to evade host cell RNase degradation. However, the mechanisms through which plus-strand RNA viruses effectively shield viral RNA from cellular ribonuclease degradation remain unclear. In this study, we identified the phenomenon whereby plus-strand RNA viruses, including avian leukosis virus subgroup J (ALV-J), reticuloendotheliosis virus (REV), chicken astrovirus (CAstV), and porcine epidemic diarrhea virus (PEDV), hijacked host cellular Musashi homolog 1 (MSI1). These viruses upregulated MSI1 expression and facilitated its translocation from the cytoplasmic periphery to a position proximal to and within the nucleus, thereby protecting viral RNA from degradation. Mechanistic analyses revealed that these viruses use distinct regions, the unique (U3) region or three prime untranslated region (3′UTR), to engage with MSI1, consequently shielding their viral RNA from cytoplasmic ribonuclease degradation. These results offer significant implications for understanding the replication tactics used by plus-strand RNA viruses, thereby advancing our understanding of their biological behaviors.

Paper Linkage:https://journals.asm.org/doi/10.1128/jvi.00023-25


Copyright@SDAU
Top